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MODELS OF BIOLOGICAL INTERACTION

Please refer to the Word document "Models of Biological Interaction Among Species" for a full written
commentary

Interaction models

Model of competition between species, with no crowding or self-limiting effects (page 3 of Word
file)

restart;with(DEtools):

with(linalg):

Feq5:=(4-3*P)*F; 

Feq5 := 4 3 P  F

Peq6:=(3-F)*P;

Peq6 := 3 F  P

sol1:=solve({Feq5=0,Peq6=0},{F,P});

sol1 := F = 3, P =
4

3
, F = 0, P = 0

sol11:=sol1[1];

sol11 := F = 3, P =
4

3

sol12:=sol1[2];

sol12 := F = 0, P = 0

    Obtaining the phase diagram for the model:

Note

The following procedure for plotting multiple trajectories along with the direction

field is adapted from Commbes, K., R. et al (2nd ed. 1997) Differential Equations 

with Maple. John Wiley & Sons Inc., Chapter 12.

des:=diff(F(t),t)=4*F(t)-3*F(t)*P(t),diff(P(t),t)=3*P(t)-F(t)*P

(t):

iniset:={seq(seq([F(0)=a,P(0)=b],a=[0.5,1.5,2.5,3.5]), b=[0.5,

1.5,2,2.5])}:

pphase:=trange->DEplot([des],[F(t),P(t)],t=trange,iniset,F=0..6,

P=0..4,stepsize=.05,     method=rkf45,linecolour=black,arrows=

thin):

pphase(-2..3);
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Which shows a saddle point around the fixed point 

F, P = 3,
4

3

Predator-Prey Models (Lotka-Volterra)
With no self-limitations on species/population size (no crowding) in either 

population  (see Page 5 of Word file)

restart: with(plots):  with(DEtools):

dFdt1:=diff(F(t),t)=(a-b*P(t))*F(t);

dFdt1 :=
d

dt
 F t = a b P t  F t

dPdt1:=diff(P(t),t)=((-1)*c + d*F(t))*P(t);

dPdt1 :=
d

dt
 P t = c d F t  P t

dFdt2:=subs({a=1,b=1,c=0.1, d=0.1},dFdt1);

dFdt2 :=
d

dt
 F t = 1 P t  F t

dPdt2:=subs({a=1,b=1,c=0.1, d=0.1},dPdt1);



3

  

  

  

  

  

  

dPdt2 :=
d

dt
 P t = 0.1 0.1 F t  P t

dFdt:=rhs(dFdt2); dPdt:=rhs(dPdt2);

dFdt := 1 P t  F t

dPdt := 0.1 0.1 F t  P t

init_con3 := {F(0)=2,P(0)=1};

init_con3 := F 0 = 2, P 0 = 1

des:=diff(F(t),t)=dFdt,diff(P(t),t)=dPdt;

des :=
d

dt
 F t = 1 P t  F t ,

d

dt
 P t = 0.1 0.1 F t  P t

iniset:={seq(seq([F(0)=alpha,P(0)=beta],alpha=[2,4.9]), beta=[1,

1])};

iniset := F 0 = 2, P 0 = 1 , F 0 = 4.9, P 0 = 1

pphase:=trange->DEplot([des],[F(t),P(t)],t=trange,iniset,F=0..5,

P=0..2,stepsize=.05,method=rkf45,linecolour=black,arrows=thin):

pphase(-4..22);
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rate_eqn1:= diff(F(t),t)=dFdt; rate_eqn2:=diff(P(t),t)=dPdt;

vars:= [F(t), P(t)];  

rate_eqn1 :=
d

dt
 F t = 1 P t  F t

rate_eqn2 :=
d

dt
 P t = 0.1 0.1 F t  P t

vars := F t , P t

init1:=[F(0)=2,P(0)=1]; init2:=[F(0)=4.9,P(0)=1]; domain := 0 ..

50;

init1 := F 0 = 2, P 0 = 1

init2 := F 0 = 4.9, P 0 = 1

domain := 0 ..50

 We now plot the predator (P) and prey (F) populations jointly against time using the first of the given 
initial conditions.   You should repeat this with the other initial conditions.  Get a feeling for the 
accuracy of the computations by changing the step size, and for the long term behavior by changing the 
time interval. 
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L:= DEplot({rate_eqn1, rate_eqn2}, vars, domain,{init1 }, 

linecolor=blue, stepsize=0.5, scene=[t, F(t)], arrows=NONE):

H:= DEplot({rate_eqn1, rate_eqn2}, vars, domain,{init1 }, 

linecolor=red,stepsize=0.5, scene=[t, P(t)], arrows=NONE):

display( {L,H} , title = `Predators (P, red) and Prey (F, blue) 

vs. time` );

t
0 10 20 30 40 50

P(t)

0.5

1

1.5

2

Predators (P, red) and Prey (F, blue) vs. time

We now plot the predator (P) and prey (F) populations jointly against time using the second of the 
given initial conditions.   

L2:= DEplot({rate_eqn1, rate_eqn2}, vars, domain,{init2 }, 

linecolor= green, stepsize=0.5, scene=[t, F(t)], arrows=NONE):

H2:= DEplot({rate_eqn1, rate_eqn2}, vars, domain,{init2 }, 

linecolor=black,stepsize=0.5, scene=[t, P(t)], arrows=NONE):

display( {L2, H2} , title = `Predators (P, green) and Prey (F, 

black) vs. time` );
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Predators (P, green) and Prey (F, black) vs. time

Although it is not done here, you should get a feeling for the accuracy of the computations by changing 
the step size, and for the long term behavior by changing the time interval. 

Next we plot the predator and prey populations against one another in a PHASE PORTRAI, using a 
different (and simpler) Maple command than used previously in this file.  We do this for two different 
initial conditions.  [Can you identify which curve goes with which initial condition?  How is the 
independent variable t showing up in these pictures?  (Hint: try it again with time interval t = 0 .. 20.) ]

DEplot({rate_eqn1, rate_eqn2}, vars, t= 0 .. 160, {init1, init2}

, stepsize=0.5, scene=[F,P],linecolor=blue,title=`Predators (P) 

vs. Prey (F) for t = 0 .. 160`, arrows=slim);
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Predators (P) vs. Prey (F) for t = 0 .. 160

As you play with the models, keep these questions in mind:

1.  What is the long term behavior of the system?
2.  In the case of oscillations, what is the period (time interval from peak to peak or trough to trough), 
and what is the amplitude?
3.  How does changing the initial conditions affect your answers to questions 1 and 2?  
4.  Does the system have any steady states (equilibria)?  Do these appear to be stable or unstable?
5.  If there are steady states, are they in any way related to the long term behavior?

What is the significance of the next calculation?  (Hint: try using these values of F and P as initial 
conditions.)

rhs1:=rhs(rate_eqn1);rhs2:=rhs(rate_eqn2);

rhs1 := 1 P t  F t

rhs2 := 0.1 0.1 F t  P t

rhs11:=subs({P(t)=P, F(t)=F},rhs1);rhs22:=subs({P(t)=P, F(t)=F},

rhs2);

rhs11 := 1 P  F

rhs22 := 0.1 0.1 F  P
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equil:= solve( {rhs11, rhs22}, {F , P });

equil := F = 1., P = 1. , F = 0., P = 0.

 Next we study solutions of the Lotka-Volterra system where the 

prey is assumed to grow logistically in the absence of any 

predators.  (see page 7 of Word file)

restart: with(plots):  with(DEtools):

dFdt1:=diff(F(t),t)=(a-b*P(t)-u*F(t))*F(t);

dFdt1 :=
d

dt
 F t = a b P t u F t  F t

dPdt1:=diff(P(t),t)=((-1)*c + d*F(t))*P(t);

dPdt1 :=
d

dt
 P t = c d F t  P t

rhsF:=rhs(dFdt1);rhsP:=rhs(dPdt1);

rhsF := a b P t u F t  F t

rhsP := c d F t  P t

solutions1:=solve({rhsF,rhsP},{P(t),F(t)});

solutions1 := F t =
c

d
, P t =

a d u c

b d
, F t =

a

u
, P t = 0 , F t = 0, P t = 0

dFdt2:=subs({a=1,b=1,u=0.1, c=0.1, d=0.1},dFdt1);

dFdt2 :=
d

dt
 F t = 1 P t 0.1 F t  F t

dPdt2:=subs({a=1,b=1,u=0.1, c=0.1,d=0.1},dPdt1);

dPdt2 :=
d

dt
 P t = 0.1 0.1 F t  P t

dFdt:=rhs(dFdt2); dPdt:=rhs(dPdt2);

dFdt := 1 P t 0.1 F t  F t

dPdt := 0.1 0.1 F t  P t

rate_eq1:= diff(F(t),t)=dFdt; rate_eq2:=diff(P(t),t)=dPdt;

vars:= [F(t), P(t)];  

rate_eq1 :=
d

dt
 F t = 1 P t 0.1 F t  F t
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rate_eq2 :=
d

dt
 P t = 0.1 0.1 F t  P t

vars := F t , P t

init1:=[F(0)=3,P(0)=0.1]; init2:=[F(0)=3,P(0)=1.5]; domain := 0 

.. 100;

init1 := F 0 = 3, P 0 = 0.1

init2 := F 0 = 3, P 0 = 1.5

domain := 0 ..100

 We plot the predator and prey populations jointly against time using the first of the given initial 
conditions.   You should repeat this with the other initial conditions.  Get a feeling for the accuracy of 
the computations by changing the step size, and for the long term behavior by changing the time 
interval.  

L:= DEplot({rate_eq1, rate_eq2}, vars, domain,{init1 }, 

linecolor=blue, stepsize=0.5, scene=[t, F(t)], arrows=NONE):

H:= DEplot({rate_eq1, rate_eq2}, vars, domain,{init1 }, 

linecolor=red,stepsize=0.5, scene=[t, P(t)], arrows=NONE):

display( {L,H} , title = `Predators (P, red) and Prey (F, blue) 

vs. time: logistic prey` );
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Predators (P, red) and Prey (F, blue) vs. time: logistic prey

DEplot({rate_eq1, rate_eq2}, vars, t= 0 .. 160, {init1, init2}, 

stepsize=0.5, scene=[F,P],linecolor=blue,title=`Predators (P) 

vs. Prey (F) for t = 0 .. 160: Logistic prey`, arrows=slim);
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Predators (P) vs. Prey (F) for t = 0 .. 160: Logistic prey

As you play with the models, keep these questions in mind:

1.  What is the long term behavior of the system?
2.  In the case of oscillations, what is the period (time interval from peak to peak or trough to trough), 
and what is the amplitude?
3.  How does changing the initial conditions affect your answers to questions 1 and 2?  
4.  Does the system have any steady states (equilibria)?  Do these appear to be stable or unstable?
5.  If there are steady states, are they in any way related to the long term behavior?

What is the significance of the next calculation?  (Hint: try using these values of F and C as initial 
conditions.)

rhs1:=rhs(rate_eq1);rhs2:=rhs(rate_eq2);

rhs1 := 1 P t 0.1 F t  F t

rhs2 := 0.1 0.1 F t  P t

rhs11:=subs({P(t)=P, F(t)=F},rhs1);rhs22:=subs({P(t)=P, F(t)=F},

rhs2);

rhs11 := 1 P 0.1 F  F

rhs22 := 0.1 0.1 F  P
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  equil:= solve( {rhs11, rhs22}, {F , P });

equil := F = 1., P = 0.9000000000 , F = 10., P = 0. , F = 0., P = 0.

What is the significance of this last calculation?  ***Answer questions 1-5 for this model.***

Next we study solutions of the Lotka-Volterra system where the 

prey and predator populations both grow logistically.
  

restart: with(plots):  with(DEtools):

dFdt1:=diff(F(t),t)=(a-b*P(t)-u*F(t))*F(t);

dFdt1 :=
d

dt
 F t = a b P t u F t  F t

dPdt1:=diff(P(t),t)=(c-v*P(t)+d*F(t))*P(t);

dPdt1 :=
d

dt
 P t = c v P t d F t  P t

dFdt:=rhs(dFdt1);

dFdt := a b P t u F t  F t

dPdt:=rhs(dPdt1);

dPdt := c v P t d F t  P t

dFdt2:=subs({a=1,b=1,u=1/10, c=1/10, d=1/10, v=1/8},dFdt);

dFdt2 := 1 P t
1

10
 F t  F t

dPdt2:=subs({a=1,b=1,u=1/10, c=1/10, d=1/10,v=1/8},dPdt);

dPdt2 :=
1

10

1

8
 P t

1

10
 F t  P t

rate_eq1:= diff(F(t),t)=dFdt2; rate_eq2:=diff(P(t),t)=dPdt2;

vars:= [F(t), P(t)];  

rate_eq1 :=
d

dt
 F t = 1 P t

1

10
 F t  F t

rate_eq2 :=
d

dt
 P t =

1

10

1

8
 P t

1

10
 F t  P t

vars := F t , P t

init1:=[F(0)=2,P(0)=1.4]; init2:=[F(0)=2,P(0)=1.2]; domain := 0 

.. 100;

init1 := F 0 = 2, P 0 = 1.4
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init2 := F 0 = 2, P 0 = 1.2

domain := 0 ..100

 We plot the predator and prey populations jointly against time using the first of the given initial 
conditions.   You should repeat this with the other initial conditions.  Get a feeling for the accuracy of 
the computations by changing the step size, and for the long term behavior by changing the time 
interval.  

L:= DEplot({rate_eq1, rate_eq2}, vars, domain,{init1 }, 

linecolor=blue, stepsize=0.5, scene=[t, F(t)], arrows=NONE):

H:= DEplot({rate_eq1, rate_eq2}, vars, domain,{init1 }, 

linecolor=red,stepsize=0.5, scene=[t, P(t)], arrows=NONE):

display( {L,H} , title = `Predators (P, red) and Prey (F, blue) 

vs. time: logistic prey` );

t
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Predators (P, red) and Prey (F, blue) vs. time: logistic prey

DEplot({rate_eq1, rate_eq2}, vars, t= 0 .. 160, {init1, init2}, 

stepsize=0.5, scene=[F,P],linecolor=blue,title=`Predators (P) 

vs. Prey (F) for t = 0 .. 160: Logistic P and F`, arrows=slim);
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Predators (P) vs. Prey (F) for t = 0 .. 160: Logistic P and F

As you play with the models, keep these questions in mind:

1.  What is the long term behavior of the system?
2.  In the case of oscillations, what is the period (time interval from peak to peak or trough to trough), 
and what is the amplitude?
3.  How does changing the initial conditions affect your answers to questions 1 and 2?  
4.  Does the system have any steady states (equilibria)?  Do these appear to be stable or unstable?
5.  If there are steady states, are they in any way related to the long term behavior?

What is the significance of the next calculation?  (Hint: try using these values of F and C as initial 
conditions.)

rhs1:=rhs(rate_eq1);rhs2:=rhs(rate_eq2);

rhs1 := 1 P t
1

10
 F t  F t

rhs2 :=
1

10

1

8
 P t

1

10
 F t  P t

rhs11:=subs({P(t)=P, F(t)=F},rhs1);rhs22:=subs({P(t)=P, F(t)=F},

rhs2);



15

  

  

  

  

  

  

  

  

  

rhs11 := 1 P
1

10
 F  F

rhs22 :=
1

10

1

8
 P

1

10
 F  P

equilibrium1:=solve({dFdt=0,dPdt=0},{F(t), P(t)});

equilibrium1 := F t =
a v b c

u v d b
, P t =

u c d a

u v d b
, F t = 0, P t =

c

v
, F t =

a

u
,

P t = 0 , F t = 0, P t = 0

equil:= solve( {rhs11, rhs22}, {F , P });

equil := F =
2

9
, P =

44

45
, F = 0, P =

4

5
, F = 10, P = 0 , F = 0, P = 0

The Conrad 2-species interaction model.
  

restart: with(plots):  with(DEtools):

Herbivore (H) dynamics:

dHdt1:=diff(H(t),t)=h*H(t)*(1-(H(t)/(HMAX)))-beta*H(t)*P(t);

dHdt1 :=
d

dt
 H t = h H t  1

H t

HMAX
 H t  P t

Predator (P) dynamics:

dPdt1:=diff(P(t),t)=p*P(t)*(1-(P(t)/PMAX))+chi*H(t)*P(t);

dPdt1 :=
d

dt
 P t = p P t  1

P t

PMAX
 H t  P t

dHdt:=rhs(dHdt1);

dHdt := h H t  1
H t

HMAX
 H t  P t

dPdt:=rhs(dPdt1);

dPdt := p P t  1
P t

PMAX
 H t  P t

dHdt2:=subs({g=1.5, C=0, beta=0.001, chi=0.00001, HMAX=10000, h=

0.5, p=0.2,PMAX=250},dHdt);

dHdt2 := 0.5 H t  1
1

10000
 H t 0.001 H t  P t

dPdt2:=subs({g=1.5, C=0, beta=0.001, chi=0.00001, HMAX=10000, h=

0.5, p=0.2,PMAX=250},dPdt);

dPdt2 := 0.2 P t  1
1

250
 P t 0.00001 H t  P t
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rate_eq1:= diff(H(t),t)=dHdt2; rate_eq2:=diff(P(t),t)=dPdt2;

vars:= [ H(t), P(t)];  

rate_eq1 :=
d

dt
 H t = 0.5 H t  1

1

10000
 H t 0.001 H t  P t

rate_eq2 :=
d

dt
 P t = 0.2 P t  1

1

250
 P t 0.00001 H t  P t

vars := H t , P t

init1:=[H(0)=10000,P(0)=250]; init2:=[H(0)=4000,P(0)=400]; 

domain := 0 .. 100;

init1 := H 0 = 10000, P 0 = 250

init2 := H 0 = 4000, P 0 = 400

domain := 0 ..100

 We plot the predator and prey populations jointly against time using the second of the given initial 
conditions.   You should repeat this with the other initial conditions.  Get a feeling for the accuracy of 
the computations by changing the step size, and for the long term behavior by changing the time 
interval.  

Z:= DEplot({rate_eq1, rate_eq2}, vars, domain,{init2 }, 

linecolor=black, stepsize=0.5, scene=[t, H(t)], arrows=slim):

L:= DEplot({rate_eq1, rate_eq2}, vars, domain,{init2 }, 

linecolor=blue, stepsize=0.5, scene=[t, P(t)], arrows=NONE):

display( {Z} , title = `Herbivores (H, black) vs. time` );

display( {L} , title = `Predators (P, blue) vs. time` );
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Herbivores (H, black) vs. time
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Predators (P, blue) vs. time

DEplot({rate_eq1, rate_eq2}, vars, t= 0 .. 160, {init1, init2}, 

stepsize=0.5, scene=[H,P],linecolor=blue,title=`Predators (P) 

vs. Prey (H) for t = 0 .. 160: Logistic prey`, arrows=slim);
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Predators (P) vs. Prey (H) for t = 0 .. 160: Logistic prey

As you play with the models, keep these questions in mind:

1.  What is the long term behavior of the system?
2.  In the case of oscillations, what is the period (time interval from peak to peak or trough to trough), 
and what is the amplitude?
3.  How does changing the initial conditions affect your answers to questions 1 and 2?  
4.  Does the system have any steady states (equilibria)?  Do these appear to be stable or unstable?
5.  If there are steady states, are they in any way related to the long term behavior?

What is the significance of the next calculation?  (Hint: try using these solution values of F and C as 
initial conditions.)

rhs1:=rhs(rate_eq1);rhs2:=rhs(rate_eq2);

rhs1 := 0.5 H t  1
1

10000
 H t 0.001 H t  P t

rhs2 := 0.2 P t  1
1

250
 P t 0.00001 H t  P t

rhs11:=subs({P(t)=P, H(t)=H},rhs1);rhs22:=subs({P(t)=P, H(t)=H},

rhs2);
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rhs11 := 0.5 H 1
1

10000
 H 0.001 H P

rhs22 := 0.2 P 1
1

250
 P 0.00001 H P

equil:= solve( {rhs11, rhs22}, {H , P });

equil := H = 0., P = 0. , H = 0., P = 250. , H = 10000., P = 0. , H = 4000., P = 300.

The Conrad 4-species interaction model (grass, herbivore and 

predator + cattle).
  

restart: with(plots):  with(DEtools):

Grass (G) dynamics (with cattle, C, a fixed number):

dGdt1:=diff(G(t),t)=g*G(t)*(1-(G(t)/GMAX))-alpha[1]*H(t)-alpha

[2]*C;

dGdt1 :=
d

dt
 G t = g G t  1

G t

GMAX 1
 H t

2
 C

Herbivore (H) dynamics:

dHdt1:=diff(H(t),t)=h*H(t)*(1-(H(t)/(theta*G(t))))-beta*H(t)*P

(t);

dHdt1 :=
d

dt
 H t = h H t  1

H t

 G t
 H t  P t

Predator (P) dynamics:

dPdt1:=diff(P(t),t)=p*P(t)*(1-(P(t)/PMAX))+chi*H(t)*P(t);

dPdt1 :=
d

dt
 P t = p P t  1

P t

PMAX
 H t  P t

dGdt:=rhs(dGdt1);

dGdt := g G t  1
G t

GMAX 1
 H t

2
 C

dHdt:=rhs(dHdt1);

dHdt := h H t  1
H t

 G t
 H t  P t

dPdt:=rhs(dPdt1);

dPdt := p P t  1
P t

PMAX
 H t  P t

dGdt2:=subs({g=1.5,alpha[1]=20,alpha[2]=200, C=0, beta=0.001, 

chi=0.00001, theta=0.01, h=0.5, p=0.2,PMAX=250,GMAX=1000000},

dGdt);
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dGdt2 := 1.5 G t  1
1

1000000
 G t 20 H t

dHdt2:=subs({g=1.5,alpha[1]=20,alpha[2]=200, C=0, beta=0.001, 

chi=0.00001, theta=0.01, h=0.5, p=0.2,PMAX=250,GMAX=1000000},

dHdt);

dHdt2 := 0.5 H t  1
100. H t

G t
0.001 H t  P t

dPdt2:=subs({g=1.5,alpha[1]=20,alpha[2]=200, C=0, beta=0.001, 

chi=0.00001, theta=0.01, h=0.5, p=0.2,PMAX=250,GMAX=1000000},

dPdt);

dPdt2 := 0.2 P t  1
1

250
 P t 0.00001 H t  P t

rate_eq0:= diff(G(t),t)=dGdt2; rate_eq1:= diff(H(t),t)=dHdt2; 

rate_eq2:=diff(P(t),t)=dPdt2;

vars:= [G(t), H(t), P(t)];  

rate_eq0 :=
d

dt
 G t = 1.5 G t  1

1

1000000
 G t 20 H t

rate_eq1 :=
d

dt
 H t = 0.5 H t  1

100. H t

G t
0.001 H t  P t

rate_eq2 :=
d

dt
 P t = 0.2 P t  1

1

250
 P t 0.00001 H t  P t

vars := G t , H t , P t

init1:=[G(0)=500000, H(0)=3000,P(0)=200]; init2:=[G(0)=900000, H

(0)=9000,P(0)=200]; domain := 0 .. 100;

init1 := G 0 = 500000, H 0 = 3000, P 0 = 200

init2 := G 0 = 900000, H 0 = 9000, P 0 = 200

domain := 0 ..100

 We plot the grass, predator and prey populations jointly against time using the first of the given initial 
conditions.   You should repeat this with the other initial conditions.  Get a feeling for the accuracy of 
the computations by changing the step size, and for the long term behavior by changing the time 
interval.  

Z:= DEplot({rate_eq0, rate_eq1, rate_eq2}, vars, domain,{init1 }

, linecolor=black, stepsize=0.5, scene=[t, G(t)], arrows=NONE):

L:= DEplot({rate_eq0, rate_eq1, rate_eq2}, vars, domain,{init1 }

, linecolor=blue, stepsize=0.5, scene=[t, H(t)], arrows=NONE):

F:= DEplot({rate_eq0, rate_eq1, rate_eq2}, vars, domain,{init1 }

, linecolor=red,stepsize=0.5, scene=[t, P(t)], arrows=NONE):

display( {Z} , title = `Grass (G, black) vs. time: all species 
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have logistic growth` );display( {L} , title = `Herbivore Prey 

(H, blue) vs. time: all species have logistic growth` );display(

{F} , title = `Predators (P, red) vs. time: all species have 

logistic growth` );display( {L,F} , title = `Predators (P, red) 

and Herbivore Prey (H, blue) vs. time: all species have logistic

growth` );

t
0 20 40 60 80 100

500000

600000

700000

800000

900000

Grass (G, black) vs. time: all species have logistic growth
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t
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Herbivore Prey (H, blue) vs. time: all species have logistic growth
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Predators (P, red) vs. time: all species have logistic growth
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t

0 20 40 60 80 100

P(t)

1000

2000

3000

4000

Predators (P, red) and Herbivore Prey (H, blue) vs. time: all species 

have logistic growth

FF:= DEplot({rate_eq0, rate_eq1, rate_eq2}, vars, domain,{init1,

init2 }, linecolor=blue,stepsize=0.5, scene=[G(t), H(t)], 

arrows=SLIM):

display( {FF} , title = `Grass (G) and Herbivore Prey (H): all 

species have logistic growth` );
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Grass (G) and Herbivore Prey (H): all species have logistic growth

DEplot({rate_eq0,rate_eq1, rate_eq2}, vars, t= 0 .. 160, {init1,

init2}, stepsize=0.5, scene=[H,P],linecolor=blue,title=

`Predators (P) vs. Prey (H) for t = 0 .. 160: Logistic prey`, 

arrows=slim);
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Predators (P) vs. Prey (H) for t = 0 .. 160: Logistic prey

As you play with the models, keep these questions in mind:

1.  What is the long term behavior of the system?
2.  In the case of oscillations, what is the period (time interval from peak to peak or trough to trough), 
and what is the amplitude?
3.  How does changing the initial conditions affect your answers to questions 1 and 2?  
4.  Does the system have any steady states (equilibria)?  Do these appear to be stable or unstable?
5.  If there are steady states, are they in any way related to the long term behavior?

What is the significance of the next calculation?  (Hint: try using these values of F and C as initial 
conditions.)

rhs0:=rhs(rate_eq0);rhs1:=rhs(rate_eq1);rhs2:=rhs(rate_eq2);

rhs0 := 1.5 G t  1
1

1000000
 G t 20 H t

rhs1 := 0.5 H t  1
100. H t

G t
0.001 H t  P t

rhs2 := 0.2 P t  1
1

250
 P t 0.00001 H t  P t
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rhs00:=subs({P(t)=P, H(t)=H, G(t)=G},rhs0);rhs11:=subs({P(t)=P, 

H(t)=H, G(t)=G},rhs1);rhs22:=subs({P(t)=P, H(t)=H, G(t)=G},rhs2)

;

rhs00 := 1.5 G 1
1

1000000
 G 20 H

rhs11 := 0.5 H 1
100. H

G
0.001 H P

rhs22 := 0.2 P 1
1

250
 P 0.00001 H P

equil:= solve( {rhs00=0, rhs11=0, rhs22=0}, {G, H , P });

equil := G = 1.000000 10
6
, H = 0., P = 0. , G = 8.666666667 10

5
, H = 8666.666667, P = 0. ,

G = 1.000000 10
6
, H = 0., P = 250. , G = 9.460853079 10

5
, H = 3825.592358, P

= 297.8199045 , G = 3.946085308 10
6
, H = 1.463825592 10

6
, P = 18047.81990

END OF DOCUMENT


