MODELS OF BIOLOGICAL INTERACTION

Please refer to the Word document "Models of Biological Interaction Among Species" for a full written commentary

Interaction models

Model of competition between species, with no crowding or self-limiting effects (page 3 of Word file)

```
    > restart;with(DEtools):
> with(linalg):
```

 \(>\) Feq5: \(=(4-3 * P) * F\);
 $$
F e q 5:=(4-3 P) F
$$

$$
>\text { Peq6: }=(3-F) * P
$$

$$
\text { Peq6 }:=(3-F) P
$$

$$
>\text { sol1 }:=\text { solve }(\{F e q 5=0, \text { Peq6 } 6=0\},\{F, P\}) ;
$$

$$
\text { soll }:=\left\{F=3, P=\frac{4}{3}\right\},\{F=0, P=0\}
$$

> sol11:=sol1[1];

$$
\text { sol11 }:=\left\{F=3, P=\frac{4}{3}\right\}
$$

$>$ sol12:=sol1[2];

$$
\text { sol12 }:=\{F=0, P=0\}
$$

Obtaining the phase diagram for the model:

```
Note
The following procedure for plotting multiple trajectories along with the direction
field is adapted from Commbes, K., R. et al (2nd ed. 1997) Differential Equations
with Maple. John Wiley & Sons Inc., Chapter 12.
> des:=diff(F(t),t)=4*F(t)-3*F(t)*P(t),diff(P(t),t)=3*P(t)-F(t)*P
    (t):
    iniset:={seq(seq([F(0)=a,P(0)=b],a=[0.5,1.5,2.5,3.5]), b=[0.5,
    1.5,2,2.5])} :
    pphase:=trange->DEplot([des],[F(t),P(t)],t=trange,iniset,F=0..6,
    P=0..4,stepsize=.05, method=rkf45,linecolour=black,arrows=
    thin):
    pphase (-2 . . 3);
```


Which shows a saddle point around the fixed point
$(F, P)=\left(3, \frac{4}{3}\right)$

Predator-Prey Models (Lotka-Volterra)

With no self-limitations on species/population size (no crowding) in either population (see Page 5 of Word file)

$\left[\begin{array}{r}\mathrm{dPdt} 1:=\operatorname{diff}(\mathrm{P}(\mathrm{t}), \mathrm{t})=((-1) * \mathrm{C}+\mathrm{d} * \mathrm{~F}(\mathrm{t})) * \mathrm{P}(\mathrm{t}) ; \\ d P d t 1:=\frac{\mathrm{d}}{\mathrm{d} t} P(t)=(-c+d F(t)) P(t)\end{array}\right.$
$[>\operatorname{dFdt} 2:=\operatorname{subs}(\{\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=0.1, \mathrm{~d}=0.1\}, \mathrm{dFdt} 1)$;

$$
d F d t 2:=\frac{\mathrm{d}}{\mathrm{~d} t} F(t)=(1-P(t)) F(t)
$$

[> dPdt2:=subs $(\{a=1, b=1, c=0.1, d=0.1\}, d P d t 1)$;

$\left[\begin{array}{l}>\text { rate_eqn } 1:=\operatorname{diff}(F(t), t)=d F d t ; \text { rate_eqn2 }:=\operatorname{diff}(P(t), t)=d P d t ; ~ \\ \quad \quad \text { vars }:=[F(t), P(t)] ;\end{array}\right.$

$$
\text { rate_eqn1 }:=\frac{\mathrm{d}}{\mathrm{~d} t} F(t)=(1-P(t)) F(t)
$$

$$
\text { rate_eqn2 }:=\frac{\mathrm{d}}{\mathrm{~d} t} P(t)=(-0.1+0.1 F(t)) P(t)
$$

$$
\text { vars }:=[F(t), P(t)]
$$

$$
[>\text { init1 }:=[F(0)=2, P(0)=1] ; \text { init2 }:=[F(0)=4.9, P(0)=1] ; \text { domain }:=0 \ldots
$$ 50;

$$
\begin{gathered}
\text { init1 }:=[F(0)=2, P(0)=1] \\
\text { init2 }:=[F(0)=4.9, P(0)=1] \\
\quad \text { domain }:=0 . .50
\end{gathered}
$$

We now plot the predator (P) and prey (F) populations jointly against time using the first of the given initial conditions. You should repeat this with the other initial conditions. Get a feeling for the accuracy of the computations by changing the step size, and for the long term behavior by changing the time interval.

We now plot the predator (P) and prey (F) populations jointly against time using the second of the given initial conditions.

```
> L2:= DEplot({rate_eqn1, rate_eqn2}, vars, domain,{init2 },
    linecolor= green, stepsize=0.5, scene=[t, F(t)], arrows=NONE):
    H2:= DEplot({rate_eqn1, rate_eqn2}, vars, domain,{init2 },
    linecolor=black,stepsize=0.5, scene=[t, P(t)], arrows=NONE):
> display( {L2, H2} , title = `Predators (P, green) and Prey (F,
    black) vs. time` );
```


Although it is not done here, you should get a feeling for the accuracy of the computations by changing the step size, and for the long term behavior by changing the time interval.

Next we plot the predator and prey populations against one another in a PHASE PORTRAI, using a different (and simpler) Maple command than used previously in this file. We do this for two different initial conditions. [Can you identify which curve goes with which initial condition? How is the independent variable t showing up in these pictures? (Hint: try it again with time interval $t=0$.. 20.)]

```
> DEplot({rate_eqn1, rate_eqn2}, vars, t= 0 . . 160, {init1, init2}
    , stepsize=0.5, scene=[F,P],linecolor=blue,title=`Predators (P)
    vs. Prey (F) for t = 0 .. 160`, arrows=slim);
```


As you play with the models, keep these questions in mind:

1. What is the long term behavior of the system?
2. In the case of oscillations, what is the period (time interval from peak to peak or trough to trough), and what is the amplitude?
3. How does changing the initial conditions affect your answers to questions 1 and 2 ?
4. Does the system have any steady states (equilibria)? Do these appear to be stable or unstable?
5. If there are steady states, are they in any way related to the long term behavior?

What is the significance of the next calculation? (Hint: try using these values of F and P as initial conditions.)

```
\(>\) rhs1:=rhs(rate_eqn1);rhs2:=rhs(rate_eqn2);
                        \(r h s 1:=(1-P(t)) F(t)\)
                        \(r h s 2:=(-0.1+0.1 F(t)) P(t)\)
[ \(>\) rhs \(11:=\operatorname{subs}(\{P(t)=P, F(t)=F\}, \operatorname{rhs} 1) ; \operatorname{rhs} 22:=\operatorname{subs}(\{P(t)=P, F(t)=F\}\),
    rhs2);
                                    rhsll := \((1-P) F\)
                                    \(r h s 22:=(-0.1+0.1 F) P\)
```

```
>> equil:= solve( {rhs11, rhs22}, {F, P });
    equil := {F=1.,P=1.},{F=0.,P=0.}
```

Next we study solutions of the Lotka-Volterra system where the prey is assumed to grow logistically in the absence of any predators. (see page 7 of Word file)

```
        restart: with(plots): with(DEtools):
    > dFdt1:=diff(F(t),t)=(a-b*P(t)-u*F(t))*F(t);
    dFdtl:= 盀t}F(t)=(a-bP(t)-uF(t))F(t
```

 \(>\operatorname{dPdt}:=\operatorname{diff}(P(t), t)=((-1) * C+d * F(t)) * P(t)\);
 $$
d P d t 1:=\frac{\mathrm{d}}{\mathrm{~d} t} P(t)=(-c+d F(t)) P(t)
$$

$>\operatorname{rhsF}:=r h s(d F d t 1) ; r h s P:=r h s(d P d t 1) ;$

$$
\begin{gathered}
r h s F:=(a-b P(t)-u F(t)) F(t) \\
r h s P:=(-c+d F(t)) P(t)
\end{gathered}
$$

$>$ solutions1:=solve(\{rhsF,rhsP\},\{P(t),F(t)\});
solutionsl $:=\left\{F(t)=\frac{c}{d}, P(t)=\frac{a d-u c}{b d}\right\},\left\{F(t)=\frac{a}{u}, P(t)=0\right\},\{F(t)=0, P(t)=0\}$
$[>d F d t 2:=\operatorname{subs}(\{\mathrm{a}=1, \mathrm{~b}=1, \mathrm{u}=0.1, \mathrm{c}=0.1, \mathrm{~d}=0.1\}, \mathrm{dF} d \mathrm{t} 1) ;$

$$
d F d t 2:=\frac{\mathrm{d}}{\mathrm{~d} t} F(t)=(1-P(t)-0.1 F(t)) F(t)
$$

$>\operatorname{dPdt} 2:=\operatorname{subs}(\{\mathrm{a}=1, \mathrm{~b}=1, \mathrm{u}=0.1, \mathrm{c}=0.1, \mathrm{~d}=0.1\}, \operatorname{dPdt} 1) ;$

$$
d P d t 2:=\frac{\mathrm{d}}{\mathrm{~d} t} P(t)=(-0.1+0.1 F(t)) P(t)
$$

$$
\left[\begin{array}{l}
>\mathrm{dFdt}:=\mathrm{rhs}(\mathrm{dFdt} 2) ; \quad \mathrm{dPdt}:=\mathrm{rhs}(\mathrm{dPdt} 2) ; \\
d F d t:=(1-P(t)-0.1 F(t)) F(t) \\
d P d t:=(-0.1+0.1 F(t)) P(t)
\end{array}\right.
$$

$$
[>\text { rate_eq1 }:=\operatorname{diff}(F(t), t)=d F d t ; \text { rate_eq2 }:=\operatorname{diff}(P(t), t)=d P d t
$$

$$
\text { vars }:=[F(t), P(t)] ;
$$

$$
\text { rate_eq1 }:=\frac{\mathrm{d}}{\mathrm{~d} t} F(t)=(1-P(t)-0.1 F(t)) F(t)
$$

As you play with the models, keep these questions in mind:

1. What is the long term behavior of the system?
2. In the case of oscillations, what is the period (time interval from peak to peak or trough to trough), and what is the amplitude?
3. How does changing the initial conditions affect your answers to questions 1 and 2 ?
4. Does the system have any steady states (equilibria)? Do these appear to be stable or unstable?
5. If there are steady states, are they in any way related to the long term behavior?

What is the significance of the next calculation? (Hint: try using these values of F and C as initial conditions.)

```
\(>\operatorname{rhs} 1:=r h s\left(r a t e \_e q 1\right) ; r h s 2:=r h s\left(r a t e \_e q 2\right) ;\)
        \(r h s 1:=(1-P(t)-0.1 F(t)) F(t)\)
                        \(r h s 2:=(-0.1+0.1 F(t)) P(t)\)
\(>\operatorname{rhs} 11:=\operatorname{subs}(\{P(t)=P, F(t)=F\}, \operatorname{rhs} 1) ; \operatorname{rhs} 22:=\operatorname{subs}(\{P(t)=P, \quad F(t)=F\}\),
    rhs2) ;
\[
\begin{aligned}
r h s 11 & :=(1-P-0.1 F) F \\
r h s 22 & :=(-0.1+0.1 F) P
\end{aligned}
\]
```

$$
\left[\begin{array}{l}
>\text { equil }:=\text { solve }(\{\text { rhs } 11, \text { rhs } 22\},\{F, P\}) ; \\
\text { equil }:=\{F=1 ., P=0.9000000000\},\{F=10 ., P=0 .\},\{F=0 ., P=0 .\}
\end{array}\right.
$$

What is the significance of this last calculation? ***Answer questions 1-5 for this model.***

Next we study solutions of the Lotka-Volterra system where the prey and predator populations both grow logistically.

[$>$ restart: with(plots): with(DEtools):
$>\mathrm{dFdt} 1:=\operatorname{diff}(\mathrm{F}(\mathrm{t}), \mathrm{t})=(\mathrm{a}-\mathrm{b} * \mathrm{P}(\mathrm{t})-\mathrm{u} * \mathrm{~F}(\mathrm{t})) * \mathrm{~F}(\mathrm{t})$;

$$
d F d t l:=\frac{\mathrm{d}}{\mathrm{~d} t} F(t)=(a-b P(t)-u F(t)) F(t)
$$

$$
\begin{aligned}
& >\operatorname{dPdt} 1:=\operatorname{diff}(\mathrm{P}(\mathrm{t}), \mathrm{t})=(\mathrm{c}-\mathrm{v} * \mathrm{P}(\mathrm{t})+\mathrm{d} * \mathrm{~F}(\mathrm{t})) * \mathrm{P}(\mathrm{t}) ; \\
& d P d t 1:=\frac{\mathrm{d}}{\mathrm{~d} t} P(t)=(c-v P(t)+d F(t)) P(t)
\end{aligned}
$$

$[>\mathrm{dFdt}:=\mathrm{rhs}(\mathrm{dFdt} 1)$;

$$
d F d t:=(a-b P(t)-u F(t)) F(t)
$$

$$
\begin{aligned}
& {[>\mathrm{dPdt}:=\mathrm{rhs}(\mathrm{dPdt} 1) ;} \\
& d P d t:=(c-v P(t)+d F(t)) P(t) \\
& \begin{array}{r}
>\operatorname{dFdt} 2:=\operatorname{subs}(\{\mathrm{a}=1, \mathrm{~b}=1, \mathrm{u}=1 / 10, \mathrm{c}=1 / 10, \mathrm{~d}=1 / 10 \\
d F d t 2:=\left(1-P(t)-\frac{1}{10} F(t)\right) F(t)
\end{array} \\
& >\operatorname{dPdt} 2:=\operatorname{subs}(\{a=1, b=1, u=1 / 10, c=1 / 10, d=1 / 10, v=1 / 8\}, d P d t) ; \\
& d P d t 2:=\left(\frac{1}{10}-\frac{1}{8} P(t)+\frac{1}{10} F(t)\right) P(t) \\
& \text { [}>\text { rate_eq1:= } \operatorname{diff}(F(t), t)=d F d t 2 \text {; rate_eq2 }:=\operatorname{diff}(P(t), t)=\operatorname{dPdt} 2 \text {; } \\
& \text { vars: }=[F(t), P(t)] \text {; } \\
& \text { rate_eq1 }:=\frac{\mathrm{d}}{\mathrm{~d} t} F(t)=\left(1-P(t)-\frac{1}{10} F(t)\right) F(t) \\
& \text { rate_eq } 2:=\frac{\mathrm{d}}{\mathrm{~d} t} P(t)=\left(\frac{1}{10}-\frac{1}{8} P(t)+\frac{1}{10} F(t)\right) P(t) \\
& \text { vars }:=[F(t), P(t)] \\
& \text { [> init1 }:=[F(0)=2, P(0)=1.4] ; \text { init2 }:=[F(0)=2, P(0)=1.2] ; \text { domain }:=0 \\
& \text {.. 100; } \\
& \text { initl }:=[F(0)=2, P(0)=1.4]
\end{aligned}
$$

$$
\begin{aligned}
& \text { init } 2:= {[F(0)=2, P(0)=1.2] } \\
& \text { domain }:=0 . .100
\end{aligned}
$$

We plot the predator and prey populations jointly against time using the first of the given initial conditions. You should repeat this with the other initial conditions. Get a feeling for the accuracy of the computations by changing the step size, and for the long term behavior by changing the time interval.

```
> L:= DEplot({rate_eq1, rate_eq2}, vars, domain,{init1 },
    linecolor=blue, stepsize=0.5, scene=[t, F(t)], arrows=NONE):
    H:= DEplot({rate_eq1, rate_eq2}, vars, domain,{init1 },
    linecolor=red,stepsize=0.5, scene=[t, P(t)], arrows=NONE):
> display( {L,H} , title = `Predators (P, red) and Prey (F, blue)
    vs. time: logistic prey` );
```

 Predators (\(P\), red) and Prey (\(F\), blue) vs. time: logistic prey


```
> DEplot({rate_eq1, rate_eq2}, vars, t= 0 .. 160, {init1, init2},
    stepsize=0.5, scene=[F,P],linecolor=blue,title=`Predators (P)
    vs. Prey (F) for t = 0 . 160: Logistic P and F`, arrows=slim);
```


As you play with the models, keep these questions in mind:

1. What is the long term behavior of the system?
2. In the case of oscillations, what is the period (time interval from peak to peak or trough to trough), and what is the amplitude?
3. How does changing the initial conditions affect your answers to questions 1 and 2 ?
4. Does the system have any steady states (equilibria)? Do these appear to be stable or unstable?
5. If there are steady states, are they in any way related to the long term behavior?

What is the significance of the next calculation? (Hint: try using these values of F and C as initial conditions.)

```
\(>\) rhs1:=rhs (rate_eq1) ; rhs2:=rhs (rate_eq2);
                                    \(r h s 1:=\left(1-P(t)-\frac{1}{10} F(t)\right) F(t)\)
    \(r h s 2:=\left(\frac{1}{10}-\frac{1}{8} P(t)+\frac{1}{10} F(t)\right) P(t)\)
    rhs11:=subs \((\{P(t)=P, F(t)=F\}, r h s 1) ; \operatorname{rhs} 22:=\operatorname{subs}(\{P(t)=P, F(t)=F\}\),
    rhs2) ;
```

$$
\begin{gathered}
r h s 11:=\left(1-P-\frac{1}{10} F\right) F \\
r h s 22:=\left(\frac{1}{10}-\frac{1}{8} P+\frac{1}{10} F\right) P
\end{gathered}
$$

$[>$ equilibrium $1:=\operatorname{solve}(\{\mathrm{dF} \mathrm{d} t=0, \mathrm{dPd}=0\},\{F(\mathrm{t}), \mathrm{P}(\mathrm{t})\})$;
equilibrium $1:=\left\{F(t)=\frac{a v-b c}{u v+d b}, P(t)=\frac{u c+d a}{u v+d b}\right\},\left\{F(t)=0, P(t)=\frac{c}{v}\right\},\left\{F(t)=\frac{a}{u}\right.$,
$P(t)=0\},\{F(t)=0, P(t)=0\}$
[$>$ equil: $=$ solve($\{$ rhs 11, rhs 22$\},\{F, P\})$;
equil $:=\left\{F=\frac{2}{9}, P=\frac{44}{45}\right\},\left\{F=0, P=\frac{4}{5}\right\},\{F=10, P=0\},\{F=0, P=0\}$

The Conrad 2-species interaction model.

[$>$ restart: with(plots): with(DEtools):
[Herbivore (H) dynamics:
$>\operatorname{dHdt} 1:=\operatorname{diff}(H(t), t)=h * H(t) *(1-(H(t) /(H M A X)))-b e t a * H(t) * P(t) ;$

$$
d H d t 1:=\frac{\mathrm{d}}{\mathrm{~d} t} H(t)=h H(t)\left(1-\frac{H(t)}{H M A X}\right)-\beta H(t) P(t)
$$

EPredator (P) dynamics:
$>\operatorname{dPdt} 1:=\operatorname{diff}(P(t), t)=p * P(t) *(1-(P(t) /$ PMAX $))+c h i * H(t) * P(t) ;$

$$
d P d t 1:=\frac{\mathrm{d}}{\mathrm{~d} t} P(t)=p P(t)\left(1-\frac{P(t)}{P M A X}\right)+\chi H(t) P(t)
$$

dHdt:=rhs (dHdt1);

$$
d H d t:=h H(t)\left(1-\frac{H(t)}{H M A X}\right)-\beta H(t) P(t)
$$

[$>\mathrm{dPdt}:=\mathrm{rhs}(\mathrm{dPdt} 1)$;

$$
d P d t:=p P(t)\left(1-\frac{P(t)}{P M A X}\right)+\chi H(t) P(t)
$$

$>$ dHdt2:=subs $(\{g=1.5, \mathrm{C}=0$, beta=0.001, chi=0.00001, HMAX=10000, $\mathrm{h}=$ $0.5, \mathrm{p}=0.2, \mathrm{PMAX}=250\}, \mathrm{dHdt})$;

$$
d H d t 2:=0.5 H(t)\left(1-\frac{1}{10000} H(t)\right)-0.001 H(t) P(t)
$$

$>$ dPdt2:=subs $(\{g=1.5, \mathrm{C}=0$, beta=0.001, chi=0.00001, HMAX=10000, $\mathrm{h}=$ 0.5, $\mathrm{p}=0.2, \mathrm{PMAX}=250\}, \mathrm{dPdt})$;

$$
d P d t 2:=0.2 P(t)\left(1-\frac{1}{250} P(t)\right)+0.00001 H(t) P(t)
$$

$$
\left.\begin{array}{l}
>\text { rate_eq1 }:=\operatorname{diff}(\mathrm{H}(\mathrm{t}), \mathrm{t})=\mathrm{dHdt} 2 ; \text { rate_eq2 }:=\operatorname{diff}(\mathrm{P}(\mathrm{t}), \mathrm{t})=\mathrm{dPdt} 2 ; \\
\text { vars }:=[\mathrm{H}(\mathrm{t}), \mathrm{P}(\mathrm{t})] ; \\
\text { rate_eq1 }:=\frac{\mathrm{d}}{\mathrm{~d} t} H(t)=0.5 H(t)\left(1-\frac{1}{10000} H(t)\right)-0.001 H(t) P(t) \\
\text { rate_eq } 2:=\frac{\mathrm{d}}{\mathrm{~d} t} P(t)=0.2 P(t)\left(1-\frac{1}{250} P(t)\right)+0.00001 H(t) P(t) \\
\text { vars }:=[H(t), P(t)] \\
\text { init1 }:=[\mathrm{H}(0)=10000, \mathrm{P}(0)=250] ; \text { init2 }:=[\mathrm{H}(0)=4000, \mathrm{P}(0)=400] ; \\
\text { domain }:=0 \ldots 100 ; \\
\text { init } 1:=[H(0)=10000, P(0)=250] \\
\text { init } 2:=[H(0)=4000, P(0)=400] \\
\text { domain }:=0 . .100
\end{array}\right] .
$$

We plot the predator and prey populations jointly against time using the second of the given initial conditions. You should repeat this with the other initial conditions. Get a feeling for the accuracy of the computations by changing the step size, and for the long term behavior by changing the time interval.

```
    > z:= DEplot({rate_eq1, rate_eq2}, vars, domain,{init2 },
    linecolor=black, stepsize=0.5, scene=[t, H(t)], arrows=slim):
    L:= DEplot({rate_eq1, rate_eq2}, vars, domain,{init2 },
    linecolor=blue, stepsize=0.5, scene=[t, P(t)], arrows=NONE):
    display( {Z} , title = `Herbivores (H, black) vs. time` );
    display( {L} , title = `Predators (P, blue) vs. time` );
```


Predators (P, blue) vs. time


```
>> DEplot({rate_eq1, rate_eq2}, vars, t= 0 .. 160, {init1, init2},
    stepsize=0.5, scene=[H,P],linecolor=blue,title=`Predators (P)
    vs. Prey (H) for t = 0 .. 160: Logistic prey`, arrows=slim);
```

Predators (P) vs. Prey (H) for $t=0$.. 160: Logistic prey

As you play with the models, keep these questions in mind:

1. What is the long term behavior of the system?
2. In the case of oscillations, what is the period (time interval from peak to peak or trough to trough), and what is the amplitude?
3. How does changing the initial conditions affect your answers to questions 1 and 2 ?
4. Does the system have any steady states (equilibria)? Do these appear to be stable or unstable?
5. If there are steady states, are they in any way related to the long term behavior?

What is the significance of the next calculation? (Hint: try using these solution values of F and C as initial conditions.)
> rhs1:=rhs (rate_eq1); rhs2:=rhs (rate_eq2);
$r h s l:=0.5 H(t)\left(1-\frac{1}{10000} H(t)\right)-0.001 H(t) P(t)$ $r h s 2:=0.2 P(t)\left(1-\frac{1}{250} P(t)\right)+0.00001 H(t) P(t)$
rhs11:=subs (\{P(t)=P, H(t)=H\},rhs1); rhs22:=subs (\{P(t)=P,H(t)=H\}, rhs2);

$$
\begin{aligned}
& r h s 11:=0.5 H\left(1-\frac{1}{10000} H\right)-0.001 H P \\
& r h s 22:=0.2 P\left(1-\frac{1}{250} P\right)+0.00001 H P
\end{aligned}
$$

[$>$ equil: $=$ solve($\{$ rhs11, rhs22\}, $\{H, P\})$;
equil $:=\{H=0 ., P=0\},.\{H=0 ., P=250\},.\{H=10000 ., P=0\},.\{H=4000 ., P=300$.

The Conrad 4-species interaction model (grass, herbivore and predator + cattle).

[$>$ restart: with(plots): with(DEtools):

[Grass (G) dynamics (with cattle, C, a fixed number):
$>\operatorname{dGdt} 1:=\operatorname{diff}(G(t), t)=g * G(t) *(1-(G(t) / G M A X))-a l p h a[1] * H(t)-a l p h a$
[2]*C;

$$
d G d t l:=\frac{\mathrm{d}}{\mathrm{~d} t} G(t)=g G(t)\left(1-\frac{G(t)}{G M A X}\right)-\alpha_{1} H(t)-\alpha_{2} C
$$

EHerbivore (H) dynamics:
$>\operatorname{dHdt} 1:=\operatorname{diff}(H(t), t)=h * H(t) *(1-(H(t) /(t h e t a * G(t))))-$ beta*H(t)*P
(t) ;

$$
d H d t l:=\frac{\mathrm{d}}{\mathrm{~d} t} H(t)=h H(t)\left(1-\frac{H(t)}{\theta G(t)}\right)-\beta H(t) P(t)
$$

EPredator (P) dynamics:
$>\operatorname{dPdt} 1:=\operatorname{diff}(P(t), t)=p * P(t) *(1-(P(t) / P M A X))+c h i * H(t) * P(t)$;

$$
d P d t l:=\frac{\mathrm{d}}{\mathrm{~d} t} P(t)=p P(t)\left(1-\frac{P(t)}{P M A X}\right)+\chi H(t) P(t)
$$

[$>\mathrm{dGdt}:=\mathrm{rhs}(\mathrm{dGdt} 1)$;

$$
d G d t:=g G(t)\left(1-\frac{G(t)}{G M A X}\right)-\alpha_{1} H(t)-\alpha_{2} C
$$

dHdt:=rhs(dHdt1);

$$
d H d t:=h H(t)\left(1-\frac{H(t)}{\theta G(t)}\right)-\beta H(t) P(t)
$$

$>\mathrm{dPdt}:=\mathrm{rhs}(\mathrm{dPdt} 1)$;

$$
d P d t:=p P(t)\left(1-\frac{P(t)}{P M A X}\right)+\chi H(t) P(t)
$$

$>$ dGdt2:=subs(\{g=1.5, alpha[1]=20, alpha[2]=200, C=0, beta=0.001, chi=0.00001, thet $a=0.01, \mathrm{~h}=0.5, \mathrm{p}=0.2, \mathrm{PMAX}=250, \mathrm{GMAX}=1000000\}$, dGdt);

$$
d G d t 2:=1.5 G(t)\left(1-\frac{1}{1000000} G(t)\right)-20 H(t)
$$

$>$ dHdt2:=subs (\{g=1.5, alpha[1]=20, alpha[2]=200, C=0, beta=0.001, chi=0.00001, theta=0.01, h=0.5, p=0.2, PMAX=250, GMAX=1000000\}, dHdt);

$$
d H d t 2:=0.5 H(t)\left(1-\frac{100 . H(t)}{G(t)}\right)-0.001 H(t) P(t)
$$

dPdt2: =subs (\{g=1.5, alpha[1]=20, alpha[2]=200, C=0, beta=0.001, chi=0.00001, theta=0.01, h=0.5, p=0.2, PMAX=250, GMAX=1000000\}, dPdt);

$$
d P d t 2:=0.2 P(t)\left(1-\frac{1}{250} P(t)\right)+0.00001 H(t) P(t)
$$

$>$ rate_eq0:= diff($G(t), t)=d G d t 2$; rate_eq1: $=\operatorname{diff}(H(t), t)=d H d t 2 ;$
rate_eq2:=diff($P(t), t)=d P d t 2$;
vars:= [G(t), H(t), P(t)];

$$
\text { rate_eq } 0:=\frac{\mathrm{d}}{\mathrm{~d} t} G(t)=1.5 G(t)\left(1-\frac{1}{1000000} G(t)\right)-20 H(t)
$$

$$
r a t e _e q 1:=\frac{\mathrm{d}}{\mathrm{~d} t} H(t)=0.5 H(t)\left(1-\frac{100 . H(t)}{G(t)}\right)-0.001 H(t) P(t)
$$

$$
\text { rate_eq } 2:=\frac{\mathrm{d}}{\mathrm{~d} t} P(t)=0.2 P(t)\left(1-\frac{1}{250} P(t)\right)+0.00001 H(t) P(t)
$$

$$
\text { vars }:=[G(t), H(t), P(t)]
$$

init1 $:=[G(0)=500000, H(0)=3000, P(0)=200]$; init2 $:=[G(0)=900000, H$ $(0)=9000, \mathrm{P}(0)=200]$; domain $:=0$.. 100;

$$
\begin{gathered}
\text { init }:=[G(0)=500000, H(0)=3000, P(0)=200] \\
\text { init }:=[G(0)=900000, H(0)=9000, P(0)=200] \\
\text { domain }:=0 . .100
\end{gathered}
$$

We plot the grass, predator and prey populations jointly against time using the first of the given initial conditions. You should repeat this with the other initial conditions. Get a feeling for the accuracy of the computations by changing the step size, and for the long term behavior by changing the time interval.
$>\mathrm{Z}:=\mathrm{DEplot}\left(\left\{r a t e _e q 0\right.\right.$, rate_eq1, rate_eq2\}, vars, domain, $\{$ init1 \}
, linecolor=black, stepsize=0.5, scene=[t, G(t)], arrows=NONE):
$>\mathrm{L}:=$ DEplot (\{rate_eq0, rate_eq1, rate_eq2\}, vars, domain, \{init1 \}
, linecolor=blue, stepsize=0.5, scene=[t, H(t)], arrows=NONE):
F:= DEplot(\{rate_eq0, rate_eq1, rate_eq2\}, vars, domain,\{init1 \} , linecolor=red,stepsize=0.5, scene=[t, $P(t)]$, arrows=NONE):
$\lceil>$ display ($\{Z\}$, title $=`$ Grass (G, black) vs. time: all species

```
have logistic growth` );display( {L} , title = `Herbivore Prey
(H, blue) vs. time: all species have logistic growth` );display(
{F} , title = `Predators (P, red) vs. time: all species have
logistic growth` );display( {L,F} , title = `Predators (P, red)
and Herbivore Prey (H, blue) vs. time: all species have logistic
growth` );
```


As you play with the models, keep these questions in mind:

1. What is the long term behavior of the system?
2. In the case of oscillations, what is the period (time interval from peak to peak or trough to trough), and what is the amplitude?
3. How does changing the initial conditions affect your answers to questions 1 and 2 ?
4. Does the system have any steady states (equilibria)? Do these appear to be stable or unstable?
5. If there are steady states, are they in any way related to the long term behavior?

What is the significance of the next calculation? (Hint: try using these values of F and C as initial conditions.)

$$
\begin{gathered}
>\text { rhs0 }:=\text { rhs (rate_eq0) ; rhs } 1:=r h s(\text { rate_eq1) ; rhs } 2:=r h s \text { (rate_eq2) ; } \\
r h s 0:=1.5 G(t)\left(1-\frac{1}{1000000} G(t)\right)-20 H(t) \\
r h s 1:=0.5 H(t)\left(1-\frac{100 . H(t)}{G(t)}\right)-0.001 H(t) P(t) \\
r h s 2:=0.2 P(t)\left(1-\frac{1}{250} P(t)\right)+0.00001 H(t) P(t)
\end{gathered}
$$

$$
\begin{aligned}
& >\operatorname{rhs} 00:=\operatorname{subs}(\{P(t)=P, H(t)=H, G(t)=G\}, r h s 0) ; r h s 11:=\operatorname{subs}(\{P(t)=P, \\
& \text { H(t) }=\mathrm{H}, \mathrm{G}(\mathrm{t})=\mathrm{G}\}, \text { rhs1); rhs22: =subs (\{P(t)=P, H(t)=H, G(t)=G\},rhs2) } \\
& \text {; } \\
& r h s 00:=1.5 G\left(1-\frac{1}{1000000} G\right)-20 H \\
& \text { rhs11 }:=0.5 H\left(1-\frac{100 . H}{G}\right)-0.001 H P \\
& r h s 22:=0.2 P\left(1-\frac{1}{250} P\right)+0.00001 H P \\
& \text { [}>\text { equil: }=\text { solve }(\{r h s 00=0, \operatorname{rhs} 11=0, \operatorname{rhs} 22=0\},\{G, H, P\}) \text {; } \\
& \text { equil }:=\left\{G=1.00000010^{6}, H=0 ., P=0 .\right\},\left\{G=8.66666666710^{5}, H=8666.666667, P=0 .\right\} \text {, } \\
& \left\{G=1.00000010^{6}, H=0 ., P=250 .\right\},\left\{G=9.46085307910^{5}, H=3825.592358, P\right. \\
& =297.8199045\},\left\{G=-3.94608530810^{6}, H=-1.46382559210^{6}, P=-18047.81990\right\}
\end{aligned}
$$

[END OF DOCUMENT

